Slide SWISS MECHANICS SEMINARS
ETH Zurich Campus

A Glimpse into Mechanics
in Switzerland

SwissMech Seminars is a monthly webinar series taking place at 12:15pm on the second Thursday of each month of the academic year. The talks are organized jointly by ETH Zürich and EPFL Lausanne. The speakers cover theoretical, computational and experimental aspects of solid and fluid mechanics in the broadest sense.

Academic Year 2020/2021

Every second Thursday of each month at 12:15pm during the academic year.

Phase-field modeling of brittle fracture: an overview and a new paradigm to address multiple solutions

Prof. Laura De Lorenzis

Computational Mechanics Group, ETH Zurich

Date/Time: November 12, Thursday, 12:15-13:15

Abstract: The phase-field modeling approach to fracture has recently attracted a lot of attention due to its remarkable capability to naturally handle fracture phenomena with arbitrarily complex crack topologies in three dimensions. On one side, the approach can be obtained through the regularization of the variational approach to fracture introduced by Francfort and Marigo in 1998, which is conceptually related to Griffith’s view of fracture; on the other side, it can be constructed as a gradient damage model with some specific properties. The functional to be minimized is not convex, so that the necessary stationarity conditions of the functional may admit multiple solutions. The solution obtained in an actual computation is typically one out of several local minimizers. Evidence of multiple solutions induced by small perturbations of numerical or physical parameters was occasionally recorded but not explicitly investigated in the literature.

In the first part of this talk, the speaker gives a brief overview of the phase-field approach to fracture and of recent related research carried out in her group. In the second part of the talk, the focus is placed on the issue of multiple solutions. Here a paradigm shift is advocated, away from the search for one particular solution towards the simultaneous description of all possible solutions (local minimizers), along with the probabilities of their occurrence. We propose the stochastic relaxation of the variational brittle fracture problem through random perturbations of the functional and introduce the concept of stochastic solution represented by random fields. In the numerical experiments, we use a simple Monte Carlo approach to compute approximations to such stochastic solutions. The final result of the computation is not a single crack pattern, but rather several possible crack patterns and their probabilities. The stochastic solution framework using evolving random fields allows additionally the interesting possibility of conditioning the probabilities of further crack paths on intermediate crack patterns.

Mechanical behavior of fluid-induced earthquakes

Prof. Marie Violay

Laboratory of Experimental Rock Mechanics, EPFL Lausanne

Date/Time: December 10, Thursday, 12:15-13:15

Abstract: Fluids play an important role in fault zone and in earthquakes generation. Fluid pressure reduces the normal effective stress, lowering the frictional strength of the fault, potentially triggering earthquake ruptures. Fluid injection induced earthquakes (FIE) are direct evidence of the effect of fluid pressure on the fault strength. In addition, natural earthquake sequences are often associated with high fluid pressures at seismogenic depths. Although simple in theory, the mechanisms that govern the nucleation, propagation and recurrence of FIEs are poorly constrained, and our ability to assess the seismic hazard that is associated with natural and induced events remains limited. Here we study the role of pore fluid pressure on fault mechanical behavior during the entire seismic cycle. i.e., strain rates from ~10-9/s (fault creep) to ~103/s (co-seismic slip). We reproduced at the scale of the laboratory miniature injection experiments. The velocity of the rupture propagation front, fault slip, dynamic stress drop and acoustic emission were recorded with a state of-the-art monitoring system. We demonstrated that the nature of seismicity is mostly governed by the initial stress level (i.e pore fluid pressure) along the faults and that the dynamic fault weakening depends on both fluid rheology and thermodynamic.

recorded-lecture
lecture-slides

Particles and snowflakes falling through turbulence

Prof. Dr.  Filippo Coletti

Experimental Fluid Dynamics, ETH Zurich

Date/Time: February 11, Thursday, 12:15-13:15

Abstract: Multiphase flows in which an inertial dispersed phase interacts with a turbulent fluid flow are ubiquitous in environmental, industrial and biomedical settings. Even stripped down to its minimal components, the problem remains complex because of the wide range of scales involved and the multiple physical parameters at play. In this talk, I will first focus on the seemingly simple case of dilute microscopic spherical particles falling through homogeneous air turbulence. A unique experimental facility is leveraged, in which hundreds of jets are individually controlled to produce the largest volume of zero-mean-flow homogeneous turbulence ever created. Using high-resolution laser imaging, I will show how inertial particles group in larger clusters than previously thought, experiencing anomalously large accelerations and a multi-fold increase in fall speed compared to their still-air terminal velocity. At concentrations found in dust storms, the particles also cause a substantial increase in turbulence intensity, at odds with most numerical simulations. The relevance of such observations is demonstrated by outdoor field measurements, in which snowflakes are illuminated and tracked over vertical planes about 30 m^2 using high-speed cameras. The snow particles display strikingly similar behaviors as seen in the laboratory, including self-similar clustering, anomalous accelerations, and turbulence-enhanced fall speed. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards the predictive understanding of snow precipitation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flow physics at Reynolds numbers not accessible in laboratory experiments or numerical simulations.

recorded-lecture
lecture-slides
Prof. Filippo Coletti

Emergence of crack-like behavior of frictional rupture

Prof. Jean-Francois Molinari

Computational Solid Mechanics Laboratory, EPFL Lausanne

Date/Time: March 11, Thursday, 12:15-13:15

Abstract: 

The process of frictional rupture, i.e., the failure of frictional systems, abounds in the technological and natural world around us, ranging from squealing car brake pads to earthquakes along geological faults. A general framework for understanding and interpreting frictional rupture commonly involves an analogy to ordinary crack propagation, with far-reaching implications for various disciplines from engineering tribology to geophysics. An important feature of the analogy to cracks is the existence of a reduction in the stress-bearing capacity of the ruptured interface, i.e., of a drop from the applied stress, realized far ahead of a propagating rupture, to the residual stress left behind it. Yet, how and under what conditions such finite and well-defined stress drops emerge from basic physics are not well understood.

In the first part of this talk, we show that for a rapid rupture a stress drop is directly related to wave radiation from the frictional interface to the bodies surrounding it and to long-range bulk elastodynamics and not exclusively to the physics of the contact interface. Furthermore, we show that the emergence of a stress drop is a transient effect, affected by the wave travel time in finite systems and by the decay of long-range elastic interactions. Finally, we supplement our results for rapid rupture with predictions for a slow rupture. All of the theoretical predictions are supported by available experimental data and by extensive computations.

In the second part, we show that for generic and realistic frictional constitutive relations, and once the necessary conditions for the emergence of an effective crack-like behavior are met, frictional rupture dynamics are approximately described by a crack-like, fracture mechanics energy balance equation. This is achieved by independently calculating the intensity of the crack-like singularity along with its associated elastic energy flux into the rupture edge region, and the frictional dissipation in the edge region. We further show that while the fracture mechanics energy balance equation provides an approximate, yet quantitative, description of frictional rupture dynamics, interesting deviations from the ordinary crack-like framework — associated with non-edge-localized dissipation — exist. Together with the results about the emergence of stress drops in frictional rupture, this work offers a comprehensive and basic understanding of why, how and to what extent frictional rupture might be viewed as an ordinary fracture process.

recorded-lecture
lecture-slides

On the coalescence of structural mechanics models with data for condition monitoring

Prof. Eleni Chatzi

Chair of Structural Mechanics, ETH Zurich

Date/Time: April 8, Thursday, 12:15-13:15

Abstract: The monitoring of the condition of structural systems operating under diverse dynamic loads involves the tasks of simulation (forward engineering), identification (inverse engineering) and maintenance/control actions. The efficient and successful implementation of these tasks is however non-trivial, due to the ever-changing nature of these systems, the variability in their interactive environment, and the polymorphic uncertainties involved. Structural Health Monitoring (SHM) attempts to tackle these challenges by exploiting information stemming from sensor networks. SHM comprises a hierarchy across levels of increasing complexity aiming to i) detect damage, ii) localize and iii) quantify damage, and iv) finally offer a prognosis over the system’s residual life.

When considering higher levels in this hierarchy, including damage assessment and even performance prognosis, purely data-driven methods are found to be lacking. For higher-level SHM tasks, or for furnishing a digital twin of a monitored structure, it is necessary to integrate the knowledge stemming from physics-based representations, relying on the underlying mechanics. This talk discusses implementation of such a hybrid approach to SHM for tackling the aforementioned challenges. Among other topics, we will discuss the potential and limitations of purely data-driven schemes, and the benefits stemming from infusion of data with reduced order structural mechanics models, in support of diagnostics and prognostics for engineered systems.

recorded-lecture
lecture-slides

From patterns in turbulence to the buckling of shells – the role of unstable invariant solutions in nonlinear mechanics

Prof. Tobias Schneider

Emergent Complexity in Physical Systems Laboratory, EPFL Lausanne

Date/Time: May 6, Thursday, 12:15-13:15

Abstract: 

The transition to turbulence of fluid flows is ubiquitous, arising in our every-day experience when we ride a bicycle or take off in an airplane. Despite this ubiquity, the laminar-turbulent transition in wall-bounded flows is one of the least understood phenomena in fluid mechanics. During transition, the flow may self-organize into patterns with regular spatial and temporal structure, whose origins remain unexplained. A canonical flow exhibiting a large variety of complex spatio-temporal flow patterns is thermal convection in a fluid layer between two parallel plates kept at different temperature and inclined against gravity. We study the dynamics of the so-called inclined layer convection (ILC) system, using a fully nonlinear dynamical systems approach based on a state space analysis of the governing equations. Exploiting the computational power of our highly parallelized numerical continuation tools (www.channelflow.ch), we construct a large set of invariant solutions of ILC and discuss their bifurcation structure. We show that unstable equilibria, travelling waves, periodic orbits and heteroclinic orbits form dynamical networks that support moderately complex chaotic dynamics.

The introduced nonlinear dynamical systems methods centered around invariant solutions are not only revolutionizing our understanding of fluid turbulence but they may also help explain complex behaviour in other intrinsically nonlinear mechanical systems. We will specifically argue that unstable elastic equilibria control when thin-walled cylindrical shells such as rocket walls or soda cans buckle and collapse. This may open avenues towards predicting the notoriously imperfect-sensitive load-carrying capacity of shell structures without prior knowledge of the shell’s defects.

recorded-lecture
lecture-slides
Prof. Tobias Schneider

Register

Please register to enroll for the SwissMech Seminars.

    SwissMech Seminar Archive

    Phase-field modeling of brittle fracture: an overview and a new paradigm to address multiple solutions
    Prof. Laura De Lorenzis
    Computational Mechanics Group, ETH Zurich
    November 12, Thursday, 12:15-13:15
    View Lecture  |  Download Slides

    Create your account